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1 Introduction

There are two objectives to this report. The first is to present a model, or mathe-
matical representation, of transverse orbit feedback control in general. The second
objective is to utilize this model as an analysis tool for the APS real-time feedback
system (RTFS). A most important example is that the model quantitatively predicts
the effect of adding more correctors to the RTFS. This and other results are pre-
sented below in some detail.

The next section reviews orbit correction as practiced at the APS. In Section
3 the model is presented, thus fulfilling the first objective of the report. That sec-
tion also lays the groundwork for APS-specific applications by describing how the
model is parameterized for the APS. Section 4 contains applications of the model
to the APS RTFS, and Section 5 is a summary of the report. Section 8 has two ap-
pendices: the first gives some model data, and the second appendix explores some
properties of the RTFS, as revealed by the model.

In the report both elementary matrix operations and standard analysis tools
for discrete-timesignals and systems are used. Examples of the latter include the
Z-transform (ZT), the Fourier transform (FT) (the two are used here interchange-
ably), and the bilinear continuous-time-to-discrete-time mapping. This basic ma-
terial can be found in many texts; an example is [1]. The report keeps to the
notational conventions of these disciplines as follows. Vectors and matrices are ex-
clusively boldfaced, and exclusively lower-case and upper-case, respectively. Time
dependence of scalar, vector, and matrix functions is denoted exclusively by square
brackets, and frequency-dependence is denoted exclusively by parenthesis. Thus
e.g. x[k] is a vector time-signal, andx(ej!) denotes its (element-wise) Fourier
transform. Nonitalic subscripts are employed to label scalars, vectors, and matri-
ces, while an italic subscript denotes a variable index. For example, if the set of
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corrector error signals is denoted bycE[k], then itsnth element may be denoted
by cE;n[k]. Finally, scalar frequency functions are capitalized but not scalar time
functions; thus thenth diagonal element of the diagonal matrixH(ej!) may be
denotedHn(e

j!).

2 Orbit Correction Overview

Both in theory and practice one can distinguish between two orbit correction algo-
rithms: static orbit correction and dynamic orbit correction [2]. Indeed, at the APS
two such systems operate in parallel, see [3] and [4]. Both systems utilize beam
position monitors (BPMs) to sense the beam’s path deviation in both the horizontal
and vertical planes, and then use corrector magnets to steer the beam back to the
desired orbit in each plane. Both systems are essentially discrete-time systems.
The difference in bandwidth between the static and the dynamic systems is what
distinguishes them, as well as their control objective.

The objective of the APS slow orbit correction system is to minimize the orbit
deviation at over 300 BPM points in the storage ring. Measured BPM data is sent
to a workstation-based algorithm that computes the amount in Amperes by which
each of 80 correctors distributed about the ring are to be driven. The current-driven
correctors impart a magnetic field to the vacuum chamber, and thus steer the beam
as close as possible to the desired orbit. The processing time for one such cycle of
BPM-measurement-to-corrector actuation is one half-second.

The APS RTFS executes the same cycle of BPM-measurement-to-
corrector actuation, but with different parameters. The system currently utilizes
38 correctors and 160 BPMs, has dedicated DSP hardware, and cycles at every
Ts = 600�s. Aside from having different parameters, its control objective is also
different: the RTFS seeks not to minimize the DC orbit deviation at each BPM
point, but rather to minimize the spatially-averaged RMS beam motion on some
frequency interval. This last statment is made precise in the next section. At the
APS, the static global system and the dynamic RTFS can operate in parallel be-
cause they are decoupled by first-order low-pass and high-pass filters, respectively.
The filters insure that the low-frequency portion of the RTFS bandwidth does not
overlap with the bandwidth of the global system.
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3 A Model of Dynamic Orbit Feedback

The qualitative description of the previous section is now mathematically formu-
lated. Specifically, a mathematical model that quantifies how well the feedback
system achieves the control objective is presented. The presentation is better under-
stood by referring throughout to the system block diagram given in Figure 1. The
first portion of this section formulates a machine-aspecific mathematical model of
orbit control, while the second portion discusses how this model is parameterized
for the APS RTFS using an injected drive signals[k]. This signal is described be-
low; assume for the first portion of this section that the injected signal is equal to
zero.
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Figure 1: System block diagram.
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3.1 A Mathematical Model

For each time samplek, let x[k] denote the column vector of orbit deviations as
measured on theM BPMs. For the APS RTFSx[k] is a 160-by-1 vector,M = 160.
This vector signal is processed by the feedback system to produceN = 38 cor-
rector drive signals, which are collectively denoted by theN -tuple column-vector
cD[k]. As stated above, the control objective is to minimize the spatially-averaged
RMS motion over some frequency band
. In other words, the objective is to min-
imize the square root of the scalar function1=M jjx(ej!)jj22 for all ! 2 
, where
x(ej!) is the Fourier transform (FT) ofx[k], and1=M jjx(ej!)jj22 is its spatially
averaged power spectral density (PSD).

The beam motion as measured at the BPMs,x[k], is affected by disturbances,
which are denoted by theM -tuplew[k], and by orbit correction via the corrector
dipoles. Typical disturbances include ground vibrations and magnet field fluctua-
tions due to noisy power supplies. The beam motion is written as

x[k] = Rc[k] +w[k]; (1)

whereR is theM -by-N response matrix, andc[k] is the corrector current. It is
desired to find a parametric model in the form of a transfer-function-like matrix
that relates the RTFS nominal inputw(z) to the nominalclosed-loopoutputx(z).
That is, a matrixG(z) is sought that can predict the RTFS’ response to any input,
x(z) = G(z)w(z).

In order to convert the orbit motion datax[k] into corrector-specific informa-
tion, the RTFS computes the so-called corrector errorcE[k], defined by

cE[k] := �R+
x[k � 1]; (2)

whereR+ is thepseudo-inverse ofR (see section 8.2, [2], [5]). Note from (2) that
the corrector error is always delayed from the instantaneousx[k] by one tick, due
primarily to a computation-time delay. The corrector currentc(z) is simply given
by

c(z) = z�1HC(z)HR(z)cE(z); (3)

where thediagonal N -by-N matricesHC(z) andHR(z) contain linear, time-
invariant (LTI) discrete time system models of eachnth corrector and regulator,
respectively. Note that aside from the regulator dynamics,HR(z) also contains the
effect of the bandpass filter that decouples the RTFS from the static global orbit
feedback system. Specifically,HR(z) equals the regulatorZT multiplied by the
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decoupling filter’sZT.

The System Transfer Function Matrix Upon combining equations (1), (2),
and (3), the transfer function matrix (TFM)G(z) arises, wherex(z) = G(z)w(z),
and

G(z) =
�
I+RH(z)R+��1 : (4)

The system dynamics are represented by the matrixH(z) := z�1HR(z)HC(z).
The TFM quantifies the effect of the RTFS in rejecting disturbances.

Recalling that the control objective is, in essence, minimization of the spatially
averaged beam PSD, it is necessary to further develop the use ofG(z) so that it
answers to the control objective per se. To do this, note that

jjx(ej!)jj22 = x
�(ej!)x(ej!); (5)

where� denotes conjugate transpose (Hermitian). Thus follows the useful relation-
ship

1

M
jjx(ej!)jj22 =

1

M
w
0(e�j!)G0(e�j!)G(ej!)w(ej!); (6)

where the superscript0 denotes transpose. Equation (6) relates the disturbance vec-
tor to the spatially averaged beam PSD as a linear function of the TFM.

There is one more step needed in order for the TFM to be a viable mathemati-
cal model. Specifically, equation (6) must be simplified further since it requires un-
available phase information for the disturbance vectorw(ej!). The desired result
is obtained by instead using the spatially averaged disturbance, denotedw(ej!),
which is defined viaw(ej!)i = w(ej!), wherei is anM -tuple vector of ones.
Under this replacement the following result is achieved:

AN ORBIT FEEDBACK MODEL The spatially averaged (closed-loop) residual
beam motion is related to the spatially averaged disturbance PSD and the RTFS
transfer function matrix, according to

1

M
jjx(ej!)jj22 =

1

M
jw(ej!)j2i0G0(e�j!)G(ej!)i; (7)

whereG(ej!) = [I+RH(ej!)R+]�1. This equation dictates how well the control
objective is achieved by the RTFS. Moreover, under (7) the inherent spatiality of
the RTFS is compressed, as the effect of theM2-element TFM is reduced to a
scalar. Depending on the application, the RTFS can thus be thought of as a scalar
system or as spatially distributed system. An example of this dichotomy arises in
model parameterization, which is discussed next.
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3.2 Parameterization of the APS Real-Time Feedback System

To compute equation (7) one requires the spatially averaged disturbance PSD,
jw(ej!)j2=M , and a parameterized TFMG(ej!). The following addresses how
this data can be determined, using the APS storage ring vertical motion as an ex-
ample.

The Beam Disturbance Spectrum In open loop the beam motion as measured
on the BPMs is equal to its disturbances there [see (1)]. Therefore the spatially
averaged open-loop beam sample PSD tends to resemble the spatially averaged
disturbance PSD, which is assumed to be stationary. That is,

1

M
jw(ej!)j2 =

1

M
x
�(ej!)x(ej!) in open loop, over time: (8)

In practice, only the salient frequency domain features of the often noisy distur-
bance spectrum are needed; therefore the disturbance PSD estimate is often inter-
polated and then filtered, thus yielding a smooth estimate of the beam disturbance.
Open-loop PSD data and a smooth estimate of that data are plotted in Figure 2.

The Transfer Function Matrix In order to quantitatively determineG(z) it
is necessary to determine bothR andHC(z) [the regulator dynamics are known
by design]. Measurement of the response matrix used in the RTFS is a routine
exercise at the APS. It is accomplished by recording the BPM response in open
loop to theN corrector drives, each driven one at a time. In terms of the variables
defined above, this procedure corresponds to driving each of theN elements of the
injected drive signals[k] in open loop (thuscD[k] = 0), and observing the steady
state BPM valuesx[k] (see Figure 1).

Each sector in the storage ring contains usually eight correctors, numbered
A1, : : :, A4, B4, : : :, B1. Currently only A3 correctors are used in the RTFS. It
has been assumed to date that each type of corrector and associated power sup-
plies have essentially identical dynamical properties across sectors (i.e., all A3’s
are similar, etc.). Indeed, recent data shows that all A3 correctors have roughly
the same speed of response. However, there are significant differences, e.g. some
A3 correctors overshoot and others do not. Still, it has been shown that a rough,
average A3 corrector model is valid for assessing the overall RTFS performance,
whereas assessment of spatially localized behavior requires that the corrector mod-
els be parameterized according to the individual correctors.

The standard method for parameterizing the linear model of ascalardynamic
system is to fitin situ input-output data to a transfer function. This scalar system
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Figure 2: Open-loop spectrum and its interpolation; closed-loop spectrum as mea-
sured and predicted by the model.

method readily applies to the RTFS as well, sinceR
+ decouples theN loops (see

section 8.2). That is,in situ, i.e., with beam, and in open loop, exclusively one
corrector is driven via the injected drive signal. If this input, e.g., a square wave,
has a high signal-to-noise (i.e.,w[k]) ratio, then the corrector’s effective response
is thenth element of the corrector-error vector. In terms of the above notation, the
corrector’s input is thenth element ofs[k], denotedsn[k], and the output is thenth
element of the corrector-error vector, denotedcE;n[k]. This input-output data pair
is used to parameterize the corrector:

OPEN-LOOPPARAM ETERIZATION PROCEDURE Parameterization of eachnth
corrector is accomplished by fitting a transfer function to the high SNR, open-loop,
input-output datafsn[k]; cE;n[k]g, i.e.,

cE;n(z) = �z�1HC;n(z)sn(z) open loop, high SNR; (9)
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whereHC;n(z) denotes the corrector’s dynamics.

Moreover, it is possible to qualitatively verify the parameterization of each
corrector. Ifs[k] = 0, then inopen loopthe nth corrector error is simply the
disturbance localized to that corrector, denoted byon(e

j!). [This is equal to thenth
row of R+ multiplied byw(ej!).] Using a PSD estimate of this signal measured
in open loop, one can test how well the empricialclosed-loopcorrector error PSD
matches the one predicted by

jcE;n(e
j!)j2 =

jon(e
j!)j2

j1 + e�j!HR;n(ej!)HC;n(ej!)j2
closed loop: (10)

The exercise associated with equation (10) is referred to as the closed-loop verifi-
cation procedure.

Results obtained by applying the open loop parameterization procedure to the
A3 corrector in sector 4, vertical plane (S4:AV3), are shown in Figure 3. A sixth-
order model is necessary to characterize the somewhat unsual response features;
the model is provided in section 8.1. Data from the closed-loop verification proce-
dure is also shown in Figure 4; the empirical closed-loop PSD data matches well
with the data obtained via equation (10) using the open-loop PSD. Not all corrector
parameterizations are verified as well as S4:AV3. Indeed it was found that some
iteration between identification (9) and verification (10) was necessary in the pa-
rameterization process, so that the modeled dynamics simultaneously fit measured
data and are still robust. Note that the A1 and B1 corrector dynamics have simpler
response waveforms, and require only a third-order model.

Despite the fact that the A3 correctors have different responses, it has been
observed that the responses of theregulated correctorsare actually quite similar.
This means that individual corrector parameterizations are robust for the regulator
currently in use (given in section 8.1). Furthermore, it means that itis possible to
utilize a single average modelHC(z) for each of the A3 correctors, an approach
that coincides with the scalar interpretation of the RTFS system mentioned above.
Figure 2 shows the results of (7) using as input the spatially-averaged disturbance
PSD estimate (also shown in the Figure), and an RTFS TFM parameterized by a
commonlow-order A3 corrector model (given in section 8.1). As was stated above,
a common, single model for all correctors works well for spatially averaged data,
but individual and generally unique corrector models are required for modeling lo-
calized behavior.
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Figure 3: Open-loop parameterization of S4:AV3: corrector drive, and empirical
and modeled corrector-error signals.

4 Applications of the Model to the APS RTFS

4.1 Expanding the RTFS to Include Additional Correctors

Intuitively, increasing the number of correctors in the RTFS should increase the
amount of disturbance rejection, since there are now more spatial points of correc-
tion. However the TFM approach reveals that the improvement in disturbance re-
jection is frequency dependent – at high-frequencies the additional correctors may
even induce disturbanceamplification. The physical reason for this phenomenon
lies in the bandlimited nature of the corrector-regulator chain:in closed looplow
and middle frequencies of each corrector-error are rejected, but high frequencies
are amplified (cf. Figure 2). This twin effect of low-frequency rejection and high-
frequency amplification is borne out in the beam motion as well, and, assuming
similar corrector dynamics, its amount scales withN (section 8.2). The situation
is further complicated if the added corrector’s dynamics are significantly different
than those in the original setup. In this case the only way to quantitatively assess
the effect of the additional correctors is to evaluate equation (7) for the original and
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Figure 4: Closed-loop verification procedure applied to S4:AV3: open- and closed-
loop corrector-error PSDs.

modified systems.

The question of adding correctors must be answered for the APS RTFS, since
it is desired to further minimize the residual (closed-loop) beam motion by includ-
ing an additional 79 correctors in orbit feedback, namely all of the A1 and B1
correctors. With 117 total correctors, there would be essentially three correctors
per sector in the storage ring, whereas presently there is only one corrector per
sector. Due to eddy-current effects the A1 and B1 correctors have a much slower
response time than the A3 correctors (see [4] for details). This limits the bandwith
of the modified RTFS, as discussed above. It is therefore desired to speed up the
slow-corrector response times, a task that is accomplished by high-pass filtering
the corrector drive signal. Design details of this “compensator” are deferred for
a later subsection. For the present, it is enough to know that this is a necessary
component of the proposed upgrade to the APS RTFS.
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It is desired to evaluate via the TFM the PSD and RMS beam motion with
and without the additional compensated correctors. This data gives a quantitative
answer to the question of performance improvement. It is instructive to compare
these to the RTFS performance under 117 correctors without slow-corrector com-
pensation, so that the effect of the compensation can be readily seen. Also the
fictitious case of 117 fast correctors (i.e., each having nominal A3 dynamics) con-
veys a best-case performance bound. In summary there are five cases to consider:

(a) open-loop beam motion

(b) residual motion, 38 correctors

(c) residual motion, 117 correctors, without slow-corrector compensation

(d) residual motion, 117 correctors, with slow-corrector compensation

(e) residual motion with 117 A3 correctors (fictitious)

Note that case (a) is merely the disturbance spectrum, and cases (b-e) are evaluated
via equation (7) using the data from case (a) as input and using the appropriately
parameterized TFM. Parameter data for the correctors is provided in the Appendix
section 8.1.

The results for the five cases are simultaneously presented in Figure 5. The
figures show first of all, that including more correctors in the RTFS brings more
midband attenuation but also more high-frequency amplification. Comparing cases
(c) and (d), it is seen that the compensator is a necessary component in the 117-
corrector configuration, for it greatly increases the beam motion attenuation. Case
(e) shows that only little high-frequency amplification occurs if the dynamics of
the added correctors are equally as fast as the original correctors.

The data shown in the figure allows for some quantitative predictions. The
compensated 117-corrector RTFS [case (d)] is predicted to achieve a maximum
factor of four improvementin PSDover the 38-corrector configuration. This pre-
dicted impovement decreases with increasing frequency, until just over 100 Hz, at
which point the modified system tends to amplify the disturbance more than oth-
erwise. In RMS terms, on the frequency band
 = [0:01; 100] Hz the predicted
RMS is 1.67�m, which is an improvement of 0.6�m over the present 38-corrector
RTFS. However, if the band of interest is increased to 450 Hz, then the modified
RTFSworsensthe RMS motion relative to the original system by over one mi-
crometer (7.2 vs. 6.1).
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Figure 5: Beam motion in open loop and under various RTFS configurations.

In summary, the modified system yields a predicted RMS beam motion atten-
uation that, up until roughly 100 Hz, is approximately 25% smaller than with 38
correctors. However, the RMS up until 200 Hz and beyond is worse under the
modification. Thus the upgrade is helpful only if a slightly higher level of high-
frequency (above 200 Hz) beam motion is tolerable by the APS users. Further
computations have shown that adjusting the regulator and compensator settings
does not improve much upon these results. Indeed,the principal limiting factor is
the lattice parameters of the chosen correctors and BPMs and not the slower band-
width of the A1 and B1 correctors(as explained in Appendix section 8.2). This is
borne out by the fictitious case (e): even if all of the correctors behaved as the fast
A3 correctors, the system would still only achieve roughlythe same broadband
RMSimprovement as with the compensated A1 and B1 correctors. In short, the
slowness of the A1 and B1 correctors worsens the broadband RMS, but this wors-
ening can be moved out to higher frequencies with compensation.
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Slow-Corrector Compensation The objective of the compensator design is
to speed up the slow A1 and B1 corrector responses with a digital filter so that
their speed of response approaches that of the fast A3 correctors. The compensator
filter is designed by model matching: The corrector’s (modeled) slow response is
constrained through prefiltering to resemble some desired response. The desired
response is the bilinear transform of a first-order system with time constant� , cas-
caded with a two-tick delay. A system-identification algorithm is used to design
the compensator, which emerges as a high-pass filter. Figure 6 shows how the
compensator, as a function of� , speeds up the A1 corrector’s response, so that it
no longer inhibits the RTFS as badly (the BV1 responses are roughly similar). The
S4:AV3 response is included in the plot for reference. Of course, there are practical
limits on the speed of the demanded corrector response, i.e. high-frequency gain
contraints (see below), and robustness constraints. Specifically for the latter, if the
compensator design is based on an overfitted corrector model, then the predicted
increase in speed may not be practical, i.e., it may be oscillatory or closed-loop
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unstable. Thus robustness considerations demand that the compensator design not
seek a response that is too fast. The data shown in Figure 5 is with compensator
parameter� = 0:001, so that the results reported above are realistically achievable.
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Figure 7: Frequency responses of compensated and uncompensated correctors and
of compensator (� = 0:001).

Figure 7 gives frequency-response plots of the uncompensated and compen-
sated A1 corrector, as well as the compensator itself. The compensator’s high
gain at high frequencies (nearly 20 dB) extends the bandwidth of the corrector.
However, this plot does not take into account high-frequency gain constraints in
the corrector’s power supplies (“actuator effort”). Fortunately the corrector-error
signals themselves are of small enough amplitude such that the demanded power
supplies’ output under compensation is achievable (cf. Figure 4): Figure 8 shows
the cumulative RMS of the corrector drive with and without compensation, due
to a typical open-loop corrector error. The figure shows that the compensator de-
mands higher level power supply output at higher frequencies, and that the average

14



10
−1

10
0

10
1

10
2

10
3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

frequency [Hz]

S
qu

ar
e−

R
oo

t o
f I

nt
eg

ra
te

d 
P

S
D

 [A
]

open−loop corrector−error                       
closed−loop corrector−drive with compensation   
closed−loop corrector−drive without compensation

Figure 8: Cumulative RMS of compensated and uncompensated corrector drive
due to typical open-loop corrector error.

demanded output (on the corrector) is�0:19 A. Further simulations show that the
maximum demanded current on a sample-by-sample basis is within�0:7 A for a
typical loop, but loops fighting a lot of noise might need as much 1.6 A. In short,
the proposed compensator’s demanded output is within the APS corrector power
supplies’ capability.

4.2 Other Applications and Further Study

Loop Coupling and Tuning It is shown in the Appendix that theN RTFS
loops are decoupled to first order and that the RTFS can be thought of asN sep-
arate systems that operate in parallel and with no dynamic cross coupling. There-
fore, there is no inherent performance benefit in “equalizing” the dynamics of each
loop to beidentical. Indeed, only the gross response speed of the fast correctors,
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and not all of its full response features, is desired from the slow correctors (see
Figure 6). Tuning the regulator/compensator of each loop individually improves
the overall RMS beam motion. A special case of this can be seen in cases (c) and
(d) of Figure 5: the performance of the RTFS as a whole improves as the dynamics
of the slow loops are improved. Formal methods to optimize the RTFS by suitable
tuning of each loop’s regulator parameters and/or structure are under study.

The RTFS effective decoupling is valid to first order. However, whenR
+ is

inaccurate then second-order effects begin to show up. These include low-level
ghosting effects of one channel’s corrector drive impinging on another channel’s
corrector error. The TFM analysis presented in the Appendix shows thatthis cou-
pling is in fact dynamic, as has been observed in practice. This counterintuitive
behavior is currently under study.

Disturbance Source Identification There are many low-amplitude disturbances
that contribute to the observed orbit motion at the APS. However strong local
sources could be potentially eliminated if they could be identified. The RTFS can
be used to do this [4]. By choosing one of the available RTFS vector signals as a di-
agnostic signal, e.g.,x[k] or cE[k], it is possible to spatially locate the disturbance
source, at least roughly. For example, a noisy quadrupole or non-RTFS-corrector
power supply in a given sector will induce high signal levels on the corrector errors
of that sector (and adjacent sectors), indicating a problem in the vicinity. By com-
bining spatial information with time-frequency information, it is anticipated that
strong sources can be characterized and located.

However, one cannot assume that the frequency content of theclosed-loopdi-
agnostic signal corresponds to the frequency content of the disturbance source: the
disturbance rejection afforded by the RTFS filters the source’s waveform, espe-
cially if it falls in the RTFS bandwidth. Thus to obtain useful frequency infor-
mation, the frequency-domain action of the RTFS must be unscrambled from the
diagnostic signal. Applying the inverse of the (appropriate) TFM to the chosen
diagnostic signal accomplishes this. This operation yields an estimate of what the
diagnostic signal would look like in open loop. The frequency content of that fil-
tered signal does correspond to the frequency content of the source.

16



5 Summary and Conclusions

A parametric model for real-time orbit feedback (RTFS) has been presented. The
model takes the form of a transfer-function matrix (TFM), and data and general
methods for empirically parameterizing this matrix have been presented. To date
the model has only been approximately parameterized, but this is sufficient for
many applications. The TFM mathematically describes the dynamics of orbit feed-
back, and thus can be used to quantify the performance benefit in adding more cor-
rectors to the APS RTFS. In particular, it was seen that by increasing the number
of correctors per sector from one to three, the RMS residual vertical beam mo-
tion (0.01 Hz to 100 Hz) is decreased by approximately 25%, but the RMS over a
wider frequency range isincreased. Since in practice the loop components are ban-
dlimited, this closed-loop high-frequency amplification is unavoidable, although it
is mitigated by prefiltering the corrector drive with a realizable high-pass compen-
sator filter. The slowness of the A1 and B1 correctors is the source of the additional
high-frequency amplification; the compensator cannot get rid of the amplification,
it can just shift it in frequency space, subject to gain and closed-loop stability con-
straints. The model is useful in approaching other orbit-feedback-related prob-
lems, most notably regulator tuning, disturbance-source identification, and loop
coupling, since the TFM captures all of the dynamics of the RTFS. Work is un-
derway to fully parameterize the model and to use it in other orbit control and
RTFS-related applications.
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8 Appendix

8.1 Transfer Functions

Some of the transfer functions (TFs) mentioned in the text are:

S4:AV3 corrector TF =
�0:07z5 � 0:52z4 � 0:12z3 + 0:31z2 + 0:31z � 0:04

z6 � 0:16z5 � 0:76z4 � 0:31z3 + 0:50z2 � 0:001z � 0:15

General A1 TF =
0:001z2 � 0:03z � 0:04

z3 � 0:78z2 � 0:34z + 0:19

General A3 TF =
�0:43z � 0:43

z2 � 0:2z

HR(z) =
0:18z2 � 0:18

z2 � 1:91z + 0:91
(regulator TF)

A1 Compensator TF=
6:07z3 � 3:3z2 � 2:03z

z3 � 0:30z2 + 0:08z � 0:07

8.2 The Role ofR+

The success of the orbit control endeavor hinges largely on the accuracy ofR
+.

More specifically, the matrix productsRR+ andR+
R respectively determine (a)

how well the RTFS rejects disturbances, and (b) whether any of theN feedback
loops cross couple (i.e., whether with zero input one corrector’s output affects an-
other in closed loop). In fact, these two notions are one and the same. These
statements are proven in the following.

The matrixR+ is given by(R0
R)�1R0 [5]. Thus,

R
+
R = (R0

R)�1R0
R (11)

= I: (12)
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The matrix product on the left-hand side of (11) is of interest because it arises in
the TFM that relatess[k] andcE[k], chosen as the respective TFM input and output
(w[k] � 0). This TFMG1(z) is given by [cf. (10)]

cE(z) = �z�1
�
I+R

+
RH(z)

��1
R
+
RHC(z)s(z) (13)

= �z�1 [I+H(z)]�1HC(z)s(z)

=: �z�1G1(z)HC(z)s(z): (14)

[The symbol=: means that the right-hand side equals the left-hand side by assign-
ment, i.e., by definition.] SinceG1(z) andHC(z) are diagonal matrices, none of
theN signals ins[k] cross couple with theN corrector errors. This means that the
N loops are decoupled, hence the RTFS can be viewed asN parallel, uncoupled
systems. This fact does not change even ifw[k] 6= 0 or if the dynamics of each
loop are unique. An immediate consequence is that there is no inherent benefit in
equalizing the loops to behave alike.

Due to modeling errors inR, equation (12) holds only to first order, at best.
Consequently theN loops are weakly coupled, per (13). This has been readily ob-
served, e.g., in carrying out the Open-Loop Parameterization Procedure (9): when
only one corrector is driven in open loop by an external signal, low signal-level
“ghosts” of that signal are observed on other corrector-error channels. While this
static coupling is an intuitive result ofR+

R 6= I, it is perhaps not intuitive that in
closed loop the ghosting effect is in fact frequency dependent, i.e., dynamic.

To better see how, e.g., low levels of this dynamic coupling arise, assume for
simplicity thatH(z) = H(z)I, and letE := R

+
R � I define an error matrix.

Then suppressingz-dependence ofH(z),G1(z) can be rewritten as

G1(z) = [(1 +H)I+HE]�1 : (15)

Assume thatjjj �H1+HEjjj < 1, wherejjj � jjj is a matrix norm. This last condition is
usually satisfied if the error matrix is “small.” Then using the lemma [5]

(I�C)�1 =
1X

k=0

C
k if jjjCjjj < 1; (16)

it can be shown that

G1(z) =
1

1 +H

1X

k=0

(
�H

1 +H
)kEk: (17)
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Thus there are( �H1+H )k-filtered off-diagonal terms inG1(z), whose magnitudes are
dictated byEk, and these induce dynamic ghosting. Note however that (17) holds
only for small errors associated with (12) [the lemma only specifies a sufficient
condition]. If there are large errors, then the dynamic ghosting effect may have a
different, unpredictable form. For example, a closed-loop1

(1+H)2
-filtering effect

has been observed using a response-matrix model that does not satisfyjjj �H1+HEjjj <
1.

Finally, while a perfectR+ satisfies (12) and hence decouples the loops, the
productRR+ is only as “close as possible” toI [namely, in a Euclidian-norm (l2)
sense]. Indeed, the closer it is toI the better the disturbance rejection. To better
see this, rewrite the TFMG(z) using the matrix-inversion lemma [5]:

G(z) = I�RH(z)
�
I+R

+
RH(z)

��1
R
+

= I�RH(z)G1(z)R
+; (18)

where the diagonalG1(z) was defined in (14). Assume, without much loss of
generality, that theN loops have identical dynamics,H(z) = H(z)I. Then,G(z)
simplifies to

G(z) = I�
H(z)

1 +H(z)
RR

+: (19)

Thus the maximal disturbance rejection[1=1 + H(z)]I is achieved ifRR+ =
I. Therefore,the lattice parameters of the RTFS correctors and BPMs ultimately
dictate the amount of RTFS disturbance rejectionsince they determine to what
degreeRR+ ! I. On the other hand, depending onH(z), the ratio1=1 +H(z)
may alsoamplifyhigh frequencies. Indeed, for the APS RTFS, as more correctors
are added to orbit feedback, i.e., asN !M , both the disturbance rejection at low
frequenciesand the disturbance amplification at high frequencies increase. The
spatially averagedRTFS behavior is governed bŷG(z) = 1+�H(z)

1+H(z) , where

� := �
1

M

MX

m=1

MX

q=1

Em;q; (20)

and, as in (15),[Em;q] = E := RR
+ � I. Finally, note that equations (18) and

(19) are useful for optimal and loop-by-loop regulator design; this is currently un-
der study.
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